
Quasi-Phi-Functions in Packing Problem  
of Ellipsoids  

 
A. Pankratov, T. Romanova, O. Khlud 

  
Abstract - The paper considers the problem of packing a 

given collection of ellipsoids of revolution into a rectangular 
container of minimal volume. Our ellipsoids can be continuos 
rotated and translated. A class of radical-free quasi-phi-
functions is used for an analytical description of non-
overlapping and containment constraints. We formulate the 
packing problem in the form of a nonlinear programming 
problem and propose a solution strategy, which allow us to 
search for local optimal packings. The actual search for a local 
minimum is performed by IPOPT. We provide computational 
results. 

Index Terms –  packing, ellipsoids, continuous rotations, 
non-overlapping, containment, quasi-phi-functions, solution 
algorithm, nonlinear optimization  

 

I. INTRODUCTION 

n this paper we deal with the optimal ellipsoid packing 
problem, which is a part of operational research and 
computational geometry. The problem is NP-hard [1] and 

has multiple applications in modern biology, mineralogy, 
medicine, materials science, nanotechnology, as well as in 
the chemical industry, power engineering etc. 

Our approach is based on mathematical modeling of 
relations between ellipsoids and thus reducing the packing 
problem to a nonlinear optimization problem. To this end a 
class of quasi-phi-functions [2] is used for analytic 
description of placement of ellipsoids in a rectangular 
container taking into account their continuous rotations and 
translations.  

The paper is organized as follows: In Section 2 we 
formulate the optimal ellipsoid packing problem and give a 
short review of related works. In Section 3 we define quasi-
phi-functions for nonoverlapping and containment 
constraints. In Section 4 we propose a mathematical model 
as a continuous nonlinear programming problem by means 
of quasi-phi-functions and describe a solution strategy. In 
Section 5 we provide our computational results. Finally we 
give some conclusions in Section 6.  
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II. PROBLEM FORMULATION 
We consider here a packing problem in the following 

setting. Let Ω  denote a rectangular domain of length l , 
width w  and height h . All of these dimensions may be 
variable, or one (two) may be fixed and the other variable. 
Suppose a set of ellipsoids of revolution, iE , 

ni {1, 2, ..., n} I∈ = , is given to be placed in Ω without 
overlaps. Each ellipsoid iE  is generated by rotation of an 
ellipse of semi-axes ia  and ib , i ia b> , along the axis of 
revolution OX,  therefore we assume that third semi-axe is 
defined as i ic b= . With each ellipsoid iE  we associate its 
local coordinate system whose origin coincides with the 
center of the ellipsoid and the coordinate axes are aligned 
with the ellipsoid’s axes. In that system the ellipsoid is 
described by parametric equations x = i ia cos t , y = 

i i ib sin t cos g ,  z = i i ib sin t sin g ,  0 ≤ it ≤ 2π, 0 ≤ ig ≤ 
2π. We also use a fixed coordinate system attached to the 
container Ω. The location and orientation of each ellipsoid 

iE  is defined by a variable vector of its placement 
parameters i i(v , )θ . Here i i i iv = (x , y , z )  is a translation 

vector, 1 2
i i i( , )θ = θ θ  is a vector of rotation parameters, 

where  1 2
i i,θ θ  are appropriate angles from axis OX to OY, 

from axis OY to OZ in the local coordinate system of  
ellipsoid iE . The rotated by angles 1 2

i i,θ θ  and translated 
by vector iv  ellipsoid iE  is defined as 

3 0 0 0
i i i iE (u) {p R : p v M( ) p , p E }= ∈ = + θ ⋅ ∀ ∈ , where 
0
iE  denotes the non-translated and non-rotated ellipsoid 

iE , M( )θ = 2 1
2 i 1 iM ( ) M ( )θ ⋅ θ  is a rotation matrix, where  
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Packing problem of ellipsoids. Pack the set of ellipsoids 
iE , ni I∈ , within a rectangular domain 
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3{(x, y, z) R : 0 x l, 0 y w, 0 z h}Ω = ∈ ≤ ≤ ≤ ≤ ≤ ≤  of 
minimal volume. If one of the two dimensions ( l  or w  or 
h ) is fixed, we need to minimize the other ones. If all are 
variable, it is natural to minimize the volume F l w h= ⋅ ⋅  of 
the container. 

At present, the interest in finding effective solutions for 
placement problems of ellipsoids is growing rapidly (see, 
e.g., [4-8]). This is due to a large number of applications 
and an extreme complexity of methods used to handle many 
of them.  

The remarkable method of the problem of cutting ellipses 
from a rectangular plate of minimal area was developed by 
Josef Kallrath and Steffen Rebennack, see [10]. The paper 
offers a good overview of related publications. For a small 
number of ellipses they are able to compute a globally 
optimal solution subject to the finite arithmetic of global 
solvers at hand. However, for more than 14 ellipsoids none 
of the nonlinear programming (NLP) solvers available in 
GAMS can even compute a locally optimal solution. 
Therefore, the authors of [10] develop polylithic 
approaches, in which the ellipses are added sequentially in a 
strip-packing fashion to the rectangle restricted in width but 
unrestricted in length. The rectangle’s area is minimized at 
each step in a greedy fashion. The sequence in which they 
add ellipses is random; this adds some GRASP flavor to the 
approach. The polylithic algorithms allow the authors to 
compute good solutions for up to 100 ellipses.  

Paper [9] studies the problem of placing a given 
collection of ellipses into a rectangular container of minimal 
area. Radical free quasi-phi-functions are used to reduce it 
to a nonlinear programming problem and develop an 
efficient solution algorithm. The paper provides 
computational results with local optimal solutions for the 
problem (up to 120 ellipses). 

The present paper proposes an approach, which is 
capable of handling precise ellipsoids (without 
approximations) and thus finding an exact local optimal 
solution. The approach can be considered as some extension 
of quasi-phi-functions for ellipses, derived in [9], to 3D 
case. 

 
III. QUASI-PHI-FUNCTIONS FOR NONOVERLAPPING AND 

CONTAINMENT CONSTRAINTS 
Quasi-phi-functions for nonoverlapping constraints. Let 
i iE (u )  and j jE (u )  be two ellipsoids of revolution with 

semi-axes i i ia , b , c   and j j ja , b , c .  

Then, a quasi-phi-function for i iE (u )  and j jE (u )  may 
be defined as follows  

ij i j ij i j ij 1 i j ij(u , u , u ) min{ ( , , u ), (u , u , u ),+′ ′ ′ ′Φ = χ Θ Θ χ  

1 i j ij 2 i j ij 2 i j ij(u , u , u ), (u , u , u ), (u , u , u )}− + −′ ′ ′χ χ χ ,      (1) 

where ij i i j ju (t , g , t , g )′ = , 

' ' ' ' ' ' ' '
i j i j i j i jN , Nχ = − = −α α − β β − γ γ , 1 2

i i i( , )Θ = θ θ , 

' ' ' T
i i i i i i i( , , ) M( ) ( , , )α β γ = Θ ⋅ α β γ , 

i
i

i

cos t
,

a
a = i i

i
i

sin t cos g
b

b = , i i
i

i

sin t sin g
b

g = ,

1 2
j j j( , )Θ = θ θ , ' ' ' T

j j j j j j j( , , ) M( ) ( , , )α β γ = Θ ⋅ α β γ , 

j
j

j

cos t
,

a
a = j j

j
j

sin t cos g
b

b = , j j
j

j

sin t sin g
b

g = , 

' ' '
k i jk i i jk i i jk i(x x ) (y y ) (z z ) 1+ + + +χ = α − + β − + γ − − , 

' ' '
k i jk i i jk i i jk i(x x ) (y y ) (z z ) 1− − − −χ = α − + β − + γ − − , 

jk jk jk(x , y , z )+ + +  are coordinates of point  jkq +  and 

jk jk jk(x , y , z )− − −  are coordinates of point jkq − , k 1, 2=  (see 
Fig.1).  

We derive jkq +  and jkq −  as follows: 
T

j2 j2 j2 j j 2 j j j j j j(x , y , z ) v M( )M (g )(a cos t , b sin t , 2a )+ + + = + Θ , 
T

j2 j2 j2 j j 2 j j j j j j(x , y , z ) v M( )M (g )(a cos t , b sin t , 2a )− − − = + Θ − , 
T

j1 j1 j1 j j 2 j j j(x , y , z ) v M( )M (g )(x , y , 0)+ + + + += + Θ ,
T

j1 j1 j1 j j 2 j j j(x , y , z ) v M( )M (g )(x , y , 0)− − − − −= + Θ , 
t t t t

j j j j j j(x , y ) ( , ) ( , )+ + = α β + η −β α ,
t t t t

j j j j j j(x , y ) ( , ) ( , )− − = α β − η −β α , 
t t
j j( , )α β = T

1 j jM (t )(a , 0) , 2
j2(a )η = . 

Thus a nonoverlapping constraint, i.e. 
i i j jint E (u ) int E (u ) = ∅ , can be defined as 

ij i j ij(u , u , u ) 0′ ′Φ ≥ , where ij′Φ  is a quasi-phi-function of 

ellipsoids i iE (u )  and j jE (u )  given by (1). 
Quasi-phi-functions for containment constraints. Let 

vertices of our rectangular container 
3{(x, y, z) R :Ω = ∈ 0 x l, 0 y w, 0 z h}≤ ≤ ≤ ≤ ≤ ≤  be 

given as follows: i{v , i 1, ..., 8}= = {(0, w, 0),  (l, w, 0),  
(l, 0, 0), (0, 0, 0), (0, w, h), (l, w, h), (l, 0, h), (0, 0, h)} . 

And let i iE (u )  be ellipsoid of revolution with semi-axes 

ia , ib  and i ic b= , i ia b> , i 1, 2..., n= . 
Then a quasi-phi-function for i iE (u )  and object 
* 3R \ intΩ = Ω  may be defined in the form  

i i i(u , u )′ ′Φ i1 i2 i3min{ (u), (u), (u)}= ϕ ϕ ϕ ,       (2) 

where 11
i i(u , u ) R′ ∈ , ' ' ' ' ' '

i i1 i2 i3 i1 i2 i3u (t , t , t , g , g , g )′ = , 
'
ik0 t 2≤ ≤ π , '

ik0 g 2≤ ≤ π ,  
i i i i
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i i i i
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ϕ ϕ ϕ ϕ
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(u) min{ (v ), (v ), (v ), (v ),
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ϕ = ϕ ϕ ϕ ϕ
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i i i i
i3 31 1 31 2 31 5 31 6
i i i i
32 3 32 4 32 7 32 8

(u) min{ (v ), (v ), (v ), (v ),

(v ), (v ), (v ), (v )},

ϕ = ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ
 

i
k1 ik ik ik ikA x B y C z D 1ϕ = + + + − , 

i
k2 ik ik ik ikA x B y C z D 1ϕ = − − − − − , 

T
ik ik ik i i ik i ik ik i ik ik(A , B , C ) M( )(a cos t , b sin t cos g , b sin t sin g )= Θ , 

ik ik i ik i ik iD A x B y C z= − − − , k 1, 2, 3= . 
Thus, a containment constraint, i.e. 

i iE (u ) ⊂ Ω ⇔ *
i iint E (u ) Ω = ∅ , can be defined as 

i i i(u , u ) 0′ ′Φ ≥ , where ij′Φ  is a quasi-phi-function for 

i iE (u )  and  *Ω  given by (2). 

IV. MATHEMATICAL MODEL AND SOLUTION STRATEGY 

The vector u Rσ∈  of all our variables can be described 
as follows: 1 2 nu (l, w, h, u , u , ..., u , )= τ , where (l, w, h)  
denote the variable dimensions of the rectangular container 
Ω  and i i iu (v , )= θ  is the vector of placement parameters 
for the ellipsoid iE , ni I∈ , where i i i iv (x , y , z )= , 

1 2
i i i( , )θ = θ θ . The vector τ  denotes the vector of extra 

variables (for our quasi-phi-functions), defined as follows: 

1 1 2 2 1 1 2 2
1 1 1 1 m m m m(t , g , t , g , ..., t , g , t , gt = ,

1 1 2 2 3 3 1 1 2 2 3 3
'1 '1 '1 '1 '1 '1 ' n ' n ' n ' n ' n ' nt , g , t , g , t , g , ..., t , g , t , g , t , g ) ,  

where  
1 1
k kt , g , 

2 2
k kt , g

 
are extra variables for the k-th 

pair of ellipsoids, k 1, ..., m= , (n 1)nm
2
−

= , and 
1
' it , 

1
' ig , 

2
' it , 

2
' ig , 

3
' it , 

3
' ig , are extra variables for each ellipsoid iE , 

ni I∈ . Lastly, R σ  denotes the σ-dimensional Euclidean 

space, where 23 5n 2n(n 1) 6n 2n 9n 3σ = + + − + = + +  is 
the number of the problem variables. 

A mathematical model of the basic packing problem may 
now be stated in the following form: 

u W R
min F(u)

σ∈ ⊂
,                             (3) 

' '
ij iW {u R : 0, 0, i 1, 2, ..., n, j 1, 2, ..., n, j i}σ= ∈ Φ ≥ Φ ≥ = = > ,(4) 

where F(u) l w h= ⋅ ⋅ , '
ijΦ  is a quasi-phi-function (1) 

defined for the pair of ellipsoids iE  and jE , (to hold 

nonoverlapping constraint), '
iΦ  is a quasi-phi-function (2) 

defined for an ellipsoid iE  and the object *Ω  (to hold the 
containment constraint). 

Our constrained optimization problem (3)-(4) is a 
continuous nonlinear programming problem.   

We propose the following solution strategy for the 
problem, which involves three major stages: 

1)First we generate a number of random starting points. 
2)Then starting from each point obtained at Step 1 we 

search for a local minimum of the objective function F(u) of 
problem (3)-(4).  

3)Lastly, we choose the best local minimum from those 
found at Step 2. This is our best solution of the problem (3)-
(4).  

V. COMPUTATIONAL RESULTS 
Here we present a number of Instances to demonstrate the 

efficiency of our quasi-phi-functions. We have run our 
experiments on an AMD Athlon 64 X2 5200+ computer. 
We search for 100 local minima to each of Instances.  The 
actual search for a local minimum is performed by IPOPT 
proposed in [11], which is available at an open access 
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Fig. 1 Illustration to construction of a quasi-phi-function for two ellipsoids 1 1E (u )  and 2 2E (u )  

 



 

 

noncommercial software depository (https://projects.coin-
or.org/Ipopt) . 

We consider a collection of ellipsoids: 
i{E , i 1, ..,12}= = i i i{(a , b , c ), i 1, 2, ...,12}= = {(5, 4, 4), 

(7, 5, 5), (6, 5, 5), (4, 3, 3), (5.5, 4.5, 4.5), (7.5, 5.5, 5.5), 
(6.5, 5.5, 5.5), (4.5, 3.5, 3.5),  (5.3, 4.3, 4.3), (7.3, 5.3, 5.3), 
(6.3, 5.3, 5.3), (4.3, 3.3, 3.3)}. 

Instance E2. Local optimal placement of ellipsoids 
i{E , i 1, 2}= is shown in Figure 2,a. Container has volume 

*F = 2192.513985 and sizes * * *(l , w , h ) = (10.000000, 
10.006950, 21.909912). Average time per one local 
minimum is 2.09 sec. 

Instance E3. Local optimal placement of ellipsoids 
i{E , i 1, 2, 3}= is shown in Figure 2,b. Container has volume  

*F = 3385.008834 and sizes * * *(l , w , h ) = (10.000000, 
33.797139, 10.015667). Average time per one local 
minimum is 5.89 sec. 

Instance E4. Local optimal placement of ellipsoids 
i{E , i 1, ..., 4}= is shown in Figure 2,c. Container has 

volume *F = 3539.283378 and sizes 
* * *(l , w , h ) = (18.273863, 10.014451, 19.340061). Average 

time per one local minimum is 22.76 sec. 
 

 
a 

 
  b        c 

Fig. 2. Local optimal placement of ellipsoids in Instances:  
a  ̶  E2, b  ̶  E3, c  ̶  E4 

 
Instance E5. Local optimal placement of ellipsoids 
i{E , i 1, ..., 5}= is shown in Figure 3,a. Container has 

volume *F = 4347.434370 and sizes 
* * *(l , w , h ) = (24.366822, 10.000252, 17.841164). Average 

time per one local minimum is 60.71 sec. 
Instance E6. Local optimal placement of ellipsoids 
i{E , i 1, ..., 6}= is shown in Figure 3,b. Container has 

volume *F = 6312.236870 and sizes 
* * *(l , w , h ) = (27.244026, 11.000291, 21.062399). Average 

time per one local minimum is 126.02 sec. 
Instance E7. Local optimal placement of ellipsoids 
i{E , i 1, ..., 7}= is shown in Figure 3,c. Container has 

volume *F = 7687.512942 and sizes 
* * *(l , w , h ) = (18.960443, 19.723184, 20.557029). Average 

time per one local minimum is 222.36 sec. 
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                   b                                           c 

Fig. 3. Local optimal placement of ellipsoids in Instances:  
a  ̶   E5, b  ̶   E6, c  ̶   E7 

 
Instance E8. Local optimal placement of ellipsoids 
i{E , i 1, ..., 8}= is shown in Figure 4a. Container has 

volume *F = 7998.224794 and sizes 
* * *(l , w , h ) = (20.223526, 19.919118, 19.854851). Average 

time per one local minimum is 359.88 sec. 
 

 
a                                     b 
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Fig. 4. Local optimal placement of ellipsoids in Instances:  
a  ̶    E8, b  ̶  E9, c   ̶  E10 

 
Instance E9. Local optimal placement of ellipsoids 
i{E , i 1, ..., 9}= is shown in Figure 4b. Container has 

volume *F = 8524.765214 and * * *(l , w , h ) = (19.365765, 
18.695366, 23.545819). Average time per one local 
minimum is 369.42  sec. 

Instance E10. Local optimal placement of ellipsoids 
i{E , i 1, ...,10}= is shown in Figure 4c. Container has 

https://projects.coin-or.org/Ipopt
https://projects.coin-or.org/Ipopt


 

 

volume *F = 10263.381559 and sizes 
* * *(l , w , h ) = (25.780036, 18.893787, 21.071135). Average 

time per one local minimum is 371.23.  
Instance E11. Local optimal placement of 

ellipsoids i{E , i 1, ...,11}= is shown in Figure 5a. Container 

has volume *F = 11860.716557 and sizes 
* * *(l , w , h ) = (21.945274, 27.902451, 19.369908). Average 

time per one local minimum is 445.95 sec. 
Instance E12. Local optimal placement of ellipsoids 
i{E , i 1, ...,12}= is shown in Figure 5b. Container has 

volume *F = 11768.260385 and sizes 
* * *(l , w , h ) = (19.327419 19.558038 31.132438). Average 

time per one local minimum is 836.70 sec. 
 

 

       
a 

 
b 

Fig. 5. Local optimal placement of ellipsoids in Instances:  
a   ̶   E11, b  ̶ E12 

  

VI. CONCLUSIONS 
We developed here an exact continuous NLP model of the 
placement problem of ellipsoids, using quasi-phi-functions. 
The use of quasi-phi-functions allows us to handle 
ellipsoids which can be continuously rotated and translated, 
but there is a price to pay: now the optimization has to be 
performed over a larger set of parameters, including the 
extra variables, besides placement parameters of ellipsoids.  
The model can be realized by the current state-of-the art 
local or global solvers. We are working on the improvement 
of our algorithms to generate feasible starting points, as 
well as, to reduce our problem dimension in local 
optimisation procedures, based on the paper [9]. We expect 
that efficiency of our algorithms will be increased in the 
future. 
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