ТЕЛЕКОММУНИКАЦИИ

УДК 621.39

ТЕХНОЛОГИЯ ОБЕСПЕЧЕНИЯ ЦЕЛОСТНОСТИ ДВОИЧНОГО ИНФОРМАЦИОННОГО РЕСУРСА НА ОСНОВЕ СТРУКТУРНО-ЭНТРОПИЙНОГО СЛОТИРОВАНИЯ

ПОДЛЕСНЫЙ С.А.

Наводятся примеры использования видеоинформационного ресурса в Вооруженных Силах Украины. Аргументируется необходимость обеспечения категорий информационной безопасности в телекоммуникациях государственных учреждений. Указывается на уязвимость передачи видеоданных при медленных DDoSатаках. Предлагается применять структурноэнтропийное слотирование в существующих технологиях обработки изображений. Обосновывается обеспечение позиционирования кодового представления в условии проведения кибератак.

Введение

В настоящее время в Вооруженных Силах Украины (ВСУ) широко применяются видеоинформационные ресурсы (ВИР) [1]. Одним из примеров использования ВИР являются беспилотные летательные аппараты в зоне проведения антитеррористической операции [2]. Второй областью применения ВИР в ВСУ является видеоконференцсвязь. Необходимость ее применения обусловлена требованием к оперативности принятия решений в кризисных ситуациях [3]. В ходе выполнения передачи видеоинформации противник может влиять на телекоммуникационное оборудование при проведении кибератак [4, 5]. Существенное влияние на передачу ВИР происходит при осуществлении медленной распределенной атаки типа «отказ в обслуживании» (slow DDoS). Эффективность данной кибератаки обусловлена тем, что краткосрочная атака не выявляется существующими системами предупреждения о вторжении, а полученная битовая ошибка в потоке кодов переменной длины сильно влияет на восстановление значений коэффициентов ДКП [6]. Поэтому возникает проблема обеспечения целостности информации в телекоммуникационных системах в условиях действия кибератак.

Для борьбы с такими ошибками в существующую технологию кодирования JPEG добавляют помехоустойчивое кодирование. Принцип работы такого кодирования в том, что к передаваемой информации добавляют проверочные биты [7]. Это позволяет выявить и исправить ошибки. В результате происходит восстановление информации. Но в такой схеме присутствуют следующие недостатки:

 помехоустойчивое кодирование применяется с использованием аппаратных и временных затрат.
Это приводит к увеличению времени обработки;

 при добавлении дополнительных битов увеличивается объем информации. Это приводит к увеличению времени передачи видеоинформации.

Данные недостатки влияют на оперативность передачи видеоинформации, что недопустимо для использования в военной сфере. Поэтому решение проблемы обеспечения целостности ВИР является актуальным.

Целью данного исследования является разработка метода обработки изображений, который обеспечивает позиционирование двоичного представления трансформанты в битовом потоке. Для данного метода выдвигаются условия сохранения временных затрат на передачу в телекоммуникационных системах.

Для достижения данной цели необходимо:

1. Провести модернизацию представления ВИР в существующих технологиях обработки изображений.

2. Разработать метод распределения двоичного представления трансформанты в кодовые конструкции фиксированной длины.

3. Проанализировать обеспечение целостности в условиях проведения кибератак для разработанного метода.

1. Разработка метода структурно-энтропийного слотирования

Для уменьшения информационной интенсивности двоичного представления трансформанты предлагается:

– формировать код N^(j) для каждой пары $\tilde{u}_{i, i+1}$ элементов вектора U(θ) линеаризированной трансформанты;

– в процессе формирования кода $N^{(j)}$ учитывать структурно-статистическую зависимость между элементами u_i и u_{i+1} .

Формирование информационной части $K^{(j)}$ кода $N^{(j)}$ для элементов u_i и u_{i+1} задается следующим функционалом:

$$\mathbf{K}^{(j)} \coloneqq \mathbf{g}^{(j)} \times \mathbf{f}_{\alpha}(\mathbf{u}_{i}, \mathbf{u}_{i+1}) + \mathbf{f}_{\beta}(\mathbf{u}_{i}, \mathbf{u}_{i+1}), \qquad (1)$$

где j – индекс кода N^(j) пары элементов u_i и u_{i+1} линеаризированной трансформанты, который определяется как j = 0,5(i+1) и изменяется в диапазоне $j = \overline{1; \theta/2}$;

 $g^{(j)}$ – весовой коэффициент кода $N^{(j)}$, который определяется как максимум элементов u_i и u_{i+1} , т.е. $g^{(j)} = \max(u_i; u_{i+1});$

 $f_{\alpha}(\textbf{u}_i,\textbf{u}_{i+1})$, $\,f_{\beta}(\textbf{u}_i,\textbf{u}_{i+1})\,-$ функции обработки эле-

ментов u_i и u_{i+1} .

Для повышения устойчивости к битовым ошибкам используется технология упругого энтропийного кодирования (Error Resilient Entropy Code – EREC). Данная технология задается функцией преобразования f_{erec} . Это определяется таким соотношением:

$$\{N^{(j)}\} \xrightarrow{f_{\text{erec}}} S(\Lambda).$$
 (2)

Здесь f_{erec} – функция распределения структурноэнтропийных кодов N^(j) по слотам s_{λ} ; Λ – количество слотов, в которые распределены структурно-энтропийные коды.

Технология EREC характеризуется следующими этапами:

 размещение содержимого кодовых конструкций N^(j);

2) перераспределение содержимого кодовых конструкций N^(j).

Данная технология размещает структурноэнтропийные коды $N^{(j)}$ в слоты пакета EREC $S(\Lambda)$ на основе перестройки битовой структуры. Здесь учитывается, что слотами являются кодовые слова равномерной длины, т.е.:

$$|s_a|_2 = |s_b|_2 = \upsilon, \Pi p \mu \ a \neq b.$$
 (3)

В результате преобразования последовательности $\{N^{(j)}\}$ структурно-энтропийных кодов $N^{(j)}$ образуется пакет $S(\Lambda)$ слотов. Вектор слотов (пакет) записывается следующим образом:

$$S(\Lambda) = \{s_1; ...; s_{\lambda}; ...; s_{\Lambda}\}.$$

Здесь s_1 – начальный слот в пакете; s_{Λ} – последний слот в пакете.

Схематическое распределение структурноэнтропийных кодов $N^{(j)}$ по слотам s_ξ , т.е:

$$N^{(1)} \rightarrow s^{(1)}_{\xi}$$

в соответствии с технологией EREC, показано на рис. 1.

В данной формуле $s_{\xi}^{(1)}$ – слот, сформированный при размещении кода N⁽¹⁾; (1) – индекс начального этапа, соответствующий первичному размеще-

нию структурно-энтропийных кодов N^(j) по сло-

 $\{N^{(j)}\} \boxed{N^{(1)} N^{(2)}} \cdots N^{(19)}$

Рис. 1. Первичный этап размещения битовых составляющих кодовых конструкций при формировании пакета слотов

6 7 8 9 10 11 12 13 14 15 16 17 18 19

5

На данном рисунке представлено распределение кодового потока $\{N^{(j)}\}$, состоящего из $\Lambda = 19$ структурно-энтропийных кодов $N^{(j)}$ по 19 слотам. Различные структурно-энтропийные коды $N^{(j)}$ представлены схематично в виде разных по окрасу и размеру прямоугольников.

На первичном этапе рассматривается размещение структурно-энтропийных кодов $N^{(j)}$ по слотам s_{ξ} без учета их выравнивания по длине υ . Порядок заполнения слотов s_{ξ} определяется следующими правилами:

1) первое правило состоит в установлении порядка расстановки структурно-энтропийных кодов $N^{(j)}$ по слотам пакета. Согласно этому правилу 1й код $N^{(1)}$ размещается в слоте s_1 (как показано на рис. 1);

2) второе правило заключается в установке порядка заполнения слотов разрядами структурноэнтропийных кодов $N^{(j)}$. Согласно этому правилу старшие разряды $q_{\xi,\gamma}$; $\gamma \rightarrow 1$ кодовой конструкции

 $N^{(j)}$ размещаются в нижних битовых позициях слота s_{ξ} . Наоборот, младшие разряды $q_{\xi,\gamma}$; $\gamma \rightarrow |N^{(\xi)}|_2$ кодовой конструкции $N^{(\xi)}$ размещаются в верхних битовых позициях слота s_{ξ} .

Следующим этапом формирования пакета слота является выравнивание длин кодовых слов s_ξ для

выполнения условия (2) в случае, когда известно количество л слотов в пакете. Для этого сначала требуется определить длину о слота.

Длина υ слота определяется как отношение суммарной длины $|\{N^{(j)}\}|_2$ последовательности

там.

 $\{N^{(j)}\}$ кодов к количеству Λ слотов. Формула расчета длины указана в следующем выражении:

$$\upsilon = \frac{|\{\mathbf{N}^{(j)}\}|_2}{\Lambda} = \left|\frac{1}{\Lambda}\sum_{i=1}^{\theta}|\mathbf{N}^{(j)}|_2\right|.$$
 (4)

Здесь $\lceil x \rceil$ – оператор округления значения X до большего натурального числа.

После определения длины υ слота возможны случаи, когда длина $|N^{(j)}|_2$ структурно-энтропийного кода $N^{(j)}$ не будет равна длине υ слота.

В общем случае избыточная составляющая $\Delta N^{(\xi)}$ структурно-энтропийного кода $N^{(\xi)}$ будет размещена по нескольким слотам s_i (рис. 2).

Рис. 2. Структурная схема многослотового распределения структурно-энтропийного кода N^(ξ): а – до распределения; б – после распределения

Процесс перераспределения избыточных составляющих $\Delta N^{(\xi)}$ структурно-энтропийных кодов $N^{(\xi)}$, с учетом размещения по нескольким слотам s_i , включает в себя следующие этапы:

1) определение позиций і избыточных составляющих Δs_i

$$i = \begin{cases} \overline{\xi + 1; \Lambda} & \text{при} \quad i > \xi; \\ \hline 1; \xi - 1 & \text{при} \quad i < \xi \end{cases}$$

слотов S_i относительно перераспределяемой избыточной составляющей $\Delta N^{(\xi)}$ структурноэнтропийного кода $N^{(\xi)}$;

2) определение количества v_{cM} и размеров $|\Delta s_i|_2$ избыточных составляющих Δs_i слотов s_i , в которые будут распределены избыточные составляющие $\Delta N^{(\xi)}$ для ξ -о кода $N^{(\xi)}$. Избыточные составляющие Δs_i слотов s_i образуют подпоследовательность $\Delta S(v_{cM})$, которая записывается следующим образом:

$$\Delta S(v_{cM}) = \{ \Delta s_i; ...; \Delta s_g; ...; \Delta s_{v_{CM}} \}.$$
 (5)

Здесь v_{cM} – количество слотов (этапов), в которые происходит перераспределение всей избыточной составляющей $\Delta N^{(\xi)}$, длиной $|\Delta N^{(\xi)}|_2$; Δs_g – избыточная составляющая слота s_g при g-м этапе его заполнения.

При этом формула, определяющая распределение избыточной составляющей $\Delta N^{(\xi)}$ структурноэнтропийного кода $N^{(\xi)}$ по слотам, следующая:

$$|N^{(\xi)}|_2 = \sum_{g=1}^{v_{CM}} |\Delta s_{\xi+d_g}|_2 , d_g = \overline{1; \Lambda - 1}.$$
 (6)

Для g -го этапа распределения избыточной составляющей $\Delta N_g^{(\xi)}$ структурно-энтропийного кода $N^{(\xi)}$ с позицией ξ проверяется остаток слота $\Delta s_{\xi+d_g}^{(\gamma)}$ с позицией $\xi+d_g$. Данный остаток слота $\Delta s_{\xi+d_g}^{(\gamma)}$ образовался в результате заполнения слота $s_{\xi+d_g}$ с позицией $\xi+d_g$ структурно-энтропийным кодом $N^{(\xi+d_g)}$ и некоторым количеством γ избыточных составляющих $\Delta N^{(i)}$ кодов $N^{(i)}$ с позицией $i \neq \xi$. Старшие разряды избыточной составляющей $\Delta N^{(\xi)}$ при этом заполнят избыточную составляющую $\Delta s_{\xi+d_g}^{(\gamma)}$

слота $s_{\xi+d_g}$. Схематически результат заполнения показан на рис. 3.

Рис. 3. Распределение структурно-энтропийного кода N^(ξ) на g -м этапе: a – до распределения; б – после распределения

Этапы перераспределения структурноэнтропийного кода N^(ξ) повторяются до устранения в позиции ξ положительной избыточности, вызванной перегрузкой слота.

Результат окончательного распределения структурно-энтропийного кода $N^{(\xi)}$ с позицией ξ за v_{cm} этапов представлен на рис. 4.

Рис. 4. Результат распределения структурноэнтропийного кода N^(ξ)

Различные структурно-энтропийные коды $N^{(\xi)}$ представлены схематично в виде различных по окрасу и размеру прямоугольников.

Распределение всей последовательности $\{N^{(\xi)}\}$ структурно-энтропийных кодов $N^{(\xi)}$ происходит по аналогичному сценарию.

Результат распределения всей последовательности $\{N^{(\xi)}\}$ структурно-энтропийных кодов $N^{(\xi)}$, представленной на рис. 1, по пакету S(Λ) слотов s_{ξ} , в соответствии с технологией EREC, показан на рис. 5.

Рис. 5. Результат размещения битовых составляющих кодовых конструкций в сформированном пакете слотов

2. Разработка метода структурно-энтропийного деслотирования

Имея информацию о данном алгоритме при отсутствии ошибок в канале, на приемной стороне кодовую последовательность $\{N^{(\xi)}\}$ структурноэнтропийных кодов $N^{(\xi)}$ можно взаимнооднозначно восстановить и декодировать.

Рассмотрим процесс декодирования распределенных структурно-энтропийных кодов $N^{(\xi)}$ и восстановления компонент u_{ξ} трансформанты на приемной стороне.

По условиям предлагаемого алгоритма необходимо идентифицировать структурно-энтропийные коды $N^{(\xi)}$, полностью вошедшие в соответствующие слоты S_{ξ} при первичном заполнении, и определить номер i -х позиций слотов S_i , которые имеют избыточность $|s_i|_2$. Номер позиции необходим для сборки структурно-энтропийных кодов $N^{(\xi)}$, которые были распределены по нескольким слотам S_i .

В предлагаемом алгоритме количество слотов s_{λ} составляет фиксированное значение Λ . При этом информация о длине $|S(\Lambda)|_2$ пакета слота предоставляется декодеру. Используя длину $|S(\Lambda)|_2$ пакета $S(\Lambda)$ слотов и количество Λ слотов, декодер определяет длину υ слота:

$$\upsilon = \frac{|\mathbf{S}(\Lambda)|_2}{\Lambda}.$$

Информация о длине слота позволяет определить позиционирование всех слотов S_{λ} в пакете $S(\Lambda)$. Порядок заполнения слотов s_{ξ} предоставляет возможность идентифицировать начало α_{ξ} каждого структурно-энтропийного кода $N^{(\xi)}$, как указано на рис. 6.

Рис. 6. Процесс разделения пакета S(Λ) слотов s $_{\lambda}$ и определения начала α_{λ} кодов N^(ξ)

Это позволяет декодеру синхронизироваться с потоком битов в начале каждого слота.

Выделив из пакета S(Λ) отдельный слот s_{ξ}, производим процесс поразрядной сборки структурноэнтропийного кода N^(ξ). При поразрядной сборке первого структурно-энтропийного кода N⁽¹⁾ индекс позиции структурно-энтропийного кода N^(ξ) в кодовом потоке принимается равным $\xi = 1$.

На первоначальном этапе g = 1 старшему разряду $q_{\xi,1}$ структурно-энтропийного кода $N^{(\xi)}$ приводится в соответствие значение двоичного разряда $h_{\xi,1}$ нижней битовой позиции слота s_{ξ} , т.е.:

$$q_{\xi,1} \coloneqq h_{\xi,1}. \tag{7}$$

При этом данный разряд формирует содержимое части кода $\partial N^{(\xi)}$:

$$[\partial N^{(\xi)}]_2 = \{q_{\xi,1}\}.$$

В результате этого длина $|\partial N^{(\xi)}|_2$ части кода $\partial N^{(\xi)}$ равняется:

$$\partial N^{(\xi)}|_2 = 1$$

После этого декодер на основе функции $f_{vlc}^{-1}(\partial N^{(\xi)}, P_{cn})$ идентифицирует окончания ξ -й

кодовой комбинации $N^{(\xi)}$.

Успешная идентификация приводит к следующим последствиям:

а) кодовой комбинации $N^{(\xi)}$ приводится в соответствие часть кода $\partial N^{(\xi)}$:

$$\mathbf{N}^{(\xi)} \coloneqq \partial \mathbf{N}^{(\xi)};$$

б) восстанавливается соответствующая компонента u_{ξ} ;

в) фиксируется длина $|\partial N^{(\xi)}|_2$ части кода $\partial N^{(\xi)}$;

г) дальнейшая сборка структурно-энтропийного кода N^(ξ) прекращается.

Если идентификация окончания ξ -й кодовой комбинации N^(ξ) не удалась, то разряду $q_{\xi, 2}$ струк-

турно-энтропийного кода $N^{(\xi)}$ приводится в соответствие двоичный разряд $h_{\xi, 2}$ следующей битовой позиции слота s_{ξ} , т.е.:

$$q_{\xi,2} \coloneqq h_{\xi,2}. \tag{8}$$

При этом изменяется содержимое $[\partial N^{(\xi)}]_2$ части кода $\partial N^{(\xi)}$:

$$[\partial N^{(\xi)}]_2 = \{q_{\xi,1}; q_{\xi,2}\}.$$

Соответственно длина $|\partial N^{(\xi)}|_2$ части кода $\partial N^{(\xi)}$ при этом увеличивается:

$$|\partial \mathbf{N}^{(\xi)}|_2 \coloneqq |\partial \mathbf{N}^{(\xi)}|_2 + 1.$$

После этого декодер на основе функции $f_{vlc}^{-1}(\partial N^{(\xi)}, P_{cn})$ повторно производит идентифика-

цию окончания ξ -й кодовой комбинации N^{(ξ)}.

Данные операции первоначального этапа побитного внесения двоичных разрядов $h_{\xi, \mu}$ слота s_{ξ} в содержимое части кода $\partial N^{(\xi)}$ продолжаются до момента:

1) идентификации окончания ξ -й кодовой комбинации N^(ξ);

2) использования всех двоичных разрядов $h_{\xi,\mu}$ слота $s_{\xi}.$

В первом случае декодер восстанавливает соответствующую компоненту u_{ξ} . Также при этом формируется избыточная составляющая Δs_{ξ} слота s_{ξ} . Она задается следующим образом:

$$[\Delta s_{\xi}]_{2} = \{h_{\xi, |\ell_{\xi}|_{2}+1}; ...; h_{\xi, \upsilon}\}.$$
(9)

В данной формуле h $_{\xi,\ \mu}$ – μ -й разряд слота s_{ξ} .

Длина $|\Delta s_{\xi}|_2$ избыточной составляющей слота Δs_{ξ} находится как разница длины υ слота s_{ξ} и длины $|\ell_{\xi}|_2$ идентифицированного структурноэнтропийного кода $N^{(\xi)}$:

$$|\Delta s_{\xi}|_{2} = \upsilon - |N^{(\xi)}|_{2}.$$

Во втором случае процесс дальнейшей поразрядной сборки структурно-энтропийных кодов $N^{(\xi)}$ требует обращения к содержимому избыточных составляющих Δs_i других слотов s_i , $i \neq \xi$. Это обращение производится только после идентификации других структурно-энтропийных кодов $N^{(i)}$, $i \neq \xi$, т.е. выполнения этапа g = 1 на позициях всех слотов s_i .

Значения позиций данных избыточных составляющих Δs_i слотов s_i в последовательности S(Λ)

задаются индексом структурно-энтропийного кода $N^{(\xi)}$ и вектором смещения $D(v_{cM})$.

При этом внесения двоичных разрядов $h_{\xi+d_g,\mu}$ избыточных составляющих $\Delta s_{\xi+d_g}^{(\gamma)}$ слота $s_{\xi+d_g}$ в содержимое части кода $\partial N^{(\xi)}$ продолжаются до идентификации окончания ξ -й кодовой комбинации N^(\xi). Следует заметить, что каждый этап сборки структурно-энтропийных кодов N^(ξ) должен происходить после завершения предыдущего на позициях всех слотов s_i .

Результат формирования структурноэнтропийного кода N^(ξ) при обращении к битовым составляющим нескольких слотов представлен на рис. 7.

Рис. 7. Сборка структурно-энтропийного кода N $^{(\xi)}$ по подпоследовательности $\Delta S(\nu_{cM})$ до идентификации

окончания кодовой комбинации N $^{(\xi)}$: а – изъятие битовых составляющих других слотов $s_{\xi+d_\sigma}$; б – результат

формирования кода $N^{(\xi)}$

Остаточная избыточность битов, которые использовались при формировании пакета $S(\Lambda)$ слотов s_{ξ} , на результат декодирования не влияет. Результатом обработки всех слотов s_{ξ} в пакете $S(\Lambda)$ является восстановление всех компонент u_{ξ} линеаризованной трансформанты.

3. Оценка целостности данных для метода структурно-энтропийной обработки

В условиях отсутствия ошибок в процессе передачи слотов s_{ξ} , обработки и сборки структурно-

энтропийных кодов $N^{(\xi)}$ декодирование производится взаимно-однозначно. Тогда квантованные значения компонент u_{ξ} линеаризованной трансформанты восстанавливаются без ошибок.

Псевдо-случайное смещение последовательности d_g обеспечивает лучшие свойства отказоустойчивости из-за его некоррелированной характеристики, так как d_{g+i} от d_g . Таким образом, два струк-

турно-энтропийных блока λ -го слота не будут искаться в том же порядке, что может быть использовано для повышения устойчивости к ошибкам.

Алгоритм обратного перераспределения будет продолжаться до окончательной идентификации всех компонент и_ξ линеаризованной трансформанты. При этом процесс идентификации выполняется параллельно.

В случае наличия битовой ошибки в μ -м разряде $h'_{\lambda,\mu}~\lambda$ -го слота s_λ

$$h'_{\lambda,\mu} \neq h_{\lambda,\mu}$$

процесс декодирования будет зависеть от битового положения в слоте:

1) Если идентификация λ -й кодовой комбинации N^(λ) до считывания разряда $h_{\lambda,\mu}$ слота s_{λ} не была произведена, то возможна неверная идентификация окончания λ -й кодовой комбинации N'^(λ).

2) При идентификации λ -й кодовой комбинации N^(λ) ошибка затрагивает избыточную составляющую $\Delta s_{\lambda}^{(\gamma)}$ слота s_{λ} , к которой идет обращение при сборке на g-м этапе ξ -го структурноэнтропийного кода N^(ξ), $\xi = \lambda - d_g$. При этом также возможна неверная идентификация окончания ξ -й кодовой комбинации N'^(ξ). Идентификация кода N^(λ) и кодов N⁽ⁱ⁾, избыточные составляющие которых входят в избыточные составляющие $\Delta s_{\lambda}^{(j)}$, $j < \gamma$ слота s_{λ} , будет произведена верно.

Для первого варианта положения ошибочного разряда $h'_{\lambda,\mu}$ при изменении длины $|N'^{(\lambda)}|_2$ кодовой комбинации $N'^{(\lambda)}$:

а) в сторону увеличения $|N'^{(\lambda)}|_2 > |N^{(\lambda)}|_2$ ошибка распространяется на коды $N^{(i)}$, которые при сборке должны были использовать разряды слотов s_i с позицией $i \in \{\lambda + d_{v_{CM}}; ...; \lambda + d_{v'_{CM}}\}$ и битовое по-

ложение в слоте после избыточной составляющей $N'^{(\lambda)}_{v'_{CM}}$ кода $N'^{(\lambda)}$;

б) в сторону уменьшения $|N^{(\lambda)}|_2 > |N'^{(\lambda)}|_2$ ошибка распространяется на коды $N^{(i)}$, которые при сборке будут использовать разряды слотов s_i с позицией $i \in \{\lambda + d_{v'_{CM}}; ...; \lambda + d_{v_{CM}}\}$ и битовое положение в слоте после избыточной составляющей $N'^{(\lambda)}_{v'_{CM}}$

кода N' $^{(\lambda)}$.

При втором варианте положения ошибочного разряда $h'_{\lambda,\mu}$ ситуация повторяется для кода $N'^{(\xi)}$.

Наглядное представление неверного декодирования пакета слотов с рис. 1 при ошибке разряда 5 в слоте 1 показано на рис. 8.

Рис. 8. Влияние ошибке в разряде $h_{1,5}$ слота s_1 на определение длин $|N^{(i)}|_2$ кодов $N^{(i)}$ последовательности $\{N^{(j)}\}$

В случае ошибочного декодирования первого структурно-энтропийного кода $N^{(1)}$ декодер неверно определит длину первого кода. В результате искажения слота 1 распространение ошибки позиционирования будет локализировано областью слотов 1, 13 и 14. Для обратного распределения коды с 2 по 12 и с 15 по 19 останутся незатронутыми.

Из количества затронутых ошибкой кодовых слов видно достоинство использования технологии структурно-энтропийного слотирования.

Для восстановления кодов 1, 13 и 14 декодер может использовать как предыдущие, так и следующие значения разрядов, определенных алгоритмом распределения. Ошибка на этапе обработки величины $K^{(j)}$, которая соответствует кодовому представлению пары $\tilde{u}_{i, i+1}$ элементов вектора $U(\theta)$ линеаризированной трансформанты, на позиционирование кодов $N^{(\xi)}, \xi \neq j$ остальных пар компонент не влияет.

В общем случае при неискаженном значении энтропийного кода $\Gamma_{g}^{(j)}$, который соответствует γ -му диапазону величины $g^{(j)}$ кода $N^{(j)}$, ошибка восстановления пары $\tilde{u}_{i, i+1}$ элементов вектора $U(\theta)$ будет локализирована в области величины $g^{(j)}$. Технология структурно-энтропийного слотирования позволяет увеличить скорость восстановления компонент изображения. Данная технология также обеспечивает локализацию ошибки восстановления для НЧ компонент изображения и позиционирования для ВЧ компонент изображения. Этим обеспечивается целостность двоичного представления трансформанты изображения.

Выводы

Разработана технология структурно-энтропийного слотирования кодового представления пар элементов линеаризированной трансформанты. Эта технология учитывает как структурную особенность и зависимость между элементами в кодируемой паре, так и статистические характеристики значений элементов в обрабатываемой трансформанте.

Разработана технология позиционирования двоичного представления трансформанты при структурно-энтропийном слотировании в условии проведения кибератак.

Литература: 1. Бараннік В.В., Підлісний С.А. Обґрунтування підходу щодо створення технології кіберзахисту відеоінформаційного ресурсу в інфокомунікаційному просторі // Наукоємні технології. 2016. №1(29). С. 82 – 86. 2. Barannik V., Podlesny S., Krasnorutskyi A., Musienko A. and Himenko V. The ensuring the integrity of information streams under the cyberattacks action // IEEE East-West Design & Test Symposium (EWDTS), 2016. P. 1-5. 3. Barannik V., Podlesny S. A., Yalivets K. and Bekirov A., The analysis of the use of technologies of error resilient coding at influence of an error in the codeword // 13th International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET). 2016. P. 52-54. 4. Barannik V.V., Akimov R.I., Vlasov A.V. Method of increasing availability and integrity of video information resources // XIIth International Conference "Modern problems of radio engineering, telecommunications and computer science, TCSET'2014. 2014. 532 р. 5. Баранник В.В., Рябуха Ю.Н. Метод повышения информационной безопасности в системах видеомониторинга кризисных ситуаций. Черкассы, 2015. 143 с. 6. Баранник В.В., Власов А.В., Сидченко С.А., Бекиров А.Э. Обоснование значимых угроз безопасности

видеоинформационного ресурса систем видеоконференцсвязи профильных систем управления // Информационно-управляющие системы на ЖД транспорте. 2014. №3. С. 24 – 31. **7**. *Бараннік В.В., Власов А.В., Тарнополов Р.В.* Модель загроз безпеки відеоінформаційного ресурсу систем відеоконференцзв'язку // Наукоємні технології. 2014. № 1 (21). С. 55 – 60. **8**. *Бараннік В., Красноруцкий А.*, Побудова правила формування позиційних структурно-вагових чисел в умовах кодоутворення за заданою довжиною // Безпека інформації.. 2014. Т. 20, №. 1. С. 62-65.

Transliterated bibliography:

1. Barannik V.V., Pidlisnyj S.A., Obg'runtuvannja pidhodu shhodo stvorennja tehnologii' kiberzahystu videoinformacijnogo resursu v infokomunikacijnomu prostori // Naukojemni tehnologii', 2016, №1(29), S. 82 – 86.

2. Barannik V., Podlesny S., Krasnorutskyi A., Musienko A. and Himenko V., The ensuring the integrity of information streams under the cyberattacks action // IEEE East-West Design & Test Symposium (EWDTS), 2016, pp. 1-5 (in print).

3. Barannik V., Podlesny S. A., Yalivets K. and Bekirov A., The analysis of the use of technologies of error resilient coding at influence of an error in the codeword // 13th International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET), 2016, pp. 52-54.

4. *Barannik V.V., Akimov R.I., Vlasov A.V.*, Method of increasing availability and integrity of video information resources // XIIth International Conference "Modern problems of radio engineering, telecommunications and computer science, TCSET'2014, 2014. p. 532.

5. *Barannik V.V., Rjabuha Ju.N.*, Metod povyshenija informacionnoj bezopasnosti v sistemah videomonitoringa krizisnyh situacij, Cherkassy, 2015, 143 s.

6. Barannik V.V., Vlasov A.V., Sidchenko S.A., Bekirov A.Je., Obosnovanie znachimyh ugroz bezopasnosti videoinformaci-onnogo resursa sistem videokonferencsvjazi profil'nyh sistem upravlenija // Informacionno-upravljajushhie sistemy na ZhD transporte, 2014, N $ext{93}$. S. 24 – 31.

7. Barannik V.V., Vlasov A.V., Tarnopolov R.V., Model' zagroz bezpeky videoinformacijnogo resursu system videokonferenczv'jazku // Naukojemni tehnologii', 2014, № 1 (21). S. 55 – 60.

8. *Barannik V., Krasnoruckyj A.,* Pobudova pravyla formuvannja pozycijnyh strukturno-vagovyh chysel v umovah kodoutvorennja za zadanoju dovzhynoju // Bezpeka informacii', 2014, T. 20. № 1. S. 62-65.

Поступила в редколлегию 18.09.2016 **Рецензент**: д-р техн. наук, проф. Безрук В.М.

Подлесный Сергей Анатолиевич, начальник отделения центра Харьковского национального университета Воздушных Сил. Научные интересы: сетевые технологии, обработка информации. Адрес: Украина, 61000, Харьков, ул. Сумская 77/79, тел. 0635653862.

Podlesny Sergey Anatolievich, head of the center department in the Kharkiv national university of Air Forces. Scientific interests: network technologies, information processing. Kharkov, Sumskaya st. 77/79, +380635653862.